Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Current Research in Biotechnology ; 5 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2324646

ABSTRACT

While the exploration into biomolecules for diagnostic and prognostic devices continues to develop, many molecules continue to be examined for individual diseases or treatments. Consequently, it can be difficult to fully understand the scope of one individual molecule's current and potential clinical utilization. The scope of this study aimed to assess the potential of Interferon Gamma-induced Protein 10 (IP-10) as a biomarker in a wide variety of diseases, both as a main and supplemental indicator of disease infection and progression. IP-10 is a chemokine secreted in response to IFN-gamma playing a major role in the activation and regulation of inflammatory and immune responses within the body. Currently, IP-10 has displayed potential application in diseases such as COVID-19, tuberculosis, sepsis, Kawasaki disease, cancer, and many more. Molecular assays developed for the detection of IP-10 take longer testing time, sophisticated instrument utilization, and need more sample volumes. These cannot be utilized for bedside patient monitoring during the illness state of the patient. Biosensing tools are alternative methods used at clinical sites due to their rapid results. Though many types of sensing mechanisms established for the detection of disease biomarkers such as optical, piezoelectric sensors, and electrochemical biosensors are far beyond the other sensing methods due to their ease of mechanism, rapid results, and portable nature. IP-10 has been a promising biomarker in different diseases, evaluation of IP-10 levels at different time points of treatments is necessary. To achieve this, current conventional methods cannot be used and thus a portable device that provides rapid results is in demand. Such point-of-care (POC) device development for IP-10 analysis is very crucial in the current scenario. Beyond this, the clarification of its physiological role in healthy and infected individuals could allow for more proper utilization in clinical diagnoses, prognoses, treatment monitoring, and more. Overall, this study was developed to summarize the associations currently created between levels of IP-10 and other biomolecules and diseases.Copyright © 2023 The Author(s)

2.
Front Immunol ; 13: 1011084, 2022.
Article in English | MEDLINE | ID: covidwho-2312677

ABSTRACT

Background: Prognostic markers for COVID-19 disease outcome are currently lacking. Plasma gelsolin (pGSN) is an actin-binding protein and an innate immune marker involved in disease pathogenesis and viral infections. Here, we demonstrate the utility of pGSN as a prognostic marker for COVID-19 disease outcome; a test performance that is significantly improved when combined with cytokines and antibodies compared to other conventional markers such as CRP and ferritin. Methods: Blood samples were longitudinally collected from hospitalized COVID-19 patients as well as COVID-19 negative controls and the levels of pGSN in µg/mL, cytokines and anti- SARS-CoV-2 spike protein antibodies assayed. Mean ± SEM values were correlated with clinical parameters to develop a prognostic platform. Results: pGSN levels were significantly reduced in COVID-19 patients compared to healthy individuals. Additionally, pGSN levels combined with plasma IL-6, IP-10 and M-CSF significantly distinguished COVID-19 patients from healthy individuals. While pGSN and anti-spike IgG titers together strongly predict COVID-19 severity and death, the combination of pGSN and IL-6 was a significant predictor of milder disease and favorable outcomes. Conclusion: Taken together, these findings suggest that multi-parameter analysis of pGSN, cytokines and antibodies could predict COVID-19 hospitalization outcomes with greater certainty compared with conventional clinical laboratory markers such as CRP and ferritin. This research will inform and improve clinical management and health system interventions in response to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Gelsolin , Biomarkers , Chemokine CXCL10 , Cytokines , Ferritins , Hospitalization , Humans , Immunoglobulin G , Interleukin-6 , Macrophage Colony-Stimulating Factor , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Open Forum Infect Dis ; 10(4): ofad133, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2304904

ABSTRACT

Background: The Clinical Trial of Sarilumab in Adults With COVID-19 (SARICOR) showed that patients with coronavirus disease 2019 (COVID-19) pneumonia and increased levels of interleukin (IL)-6 might benefit from blockade of the IL-6 pathway. However, the benefit from this intervention might not be uniform. In this subanalysis, we sought to determine if other immunoactivation markers, besides IL-6, could identify which subgroup of patients benefit most from this intervention. Methods: The SARICOR trial was a phase II, open-label, multicenter, controlled trial (July 2020-March 2021) in which patients were randomized to receive usual care (UC; control group), UC plus a single dose of sarilumab 200 mg (sarilumab-200 group), or UC plus a single dose of sarilumab 400 mg (sarilumab-400 group). Patients who had baseline serum samples for cytokine determination (IL-8, IL-10, monocyte chemoattractant protein-1, interferon-inducible protein [IP]-10) were included in this secondary analysis. Progression to acute respiratory distress syndrome (ARDS) according to cytokine levels and treatment received was evaluated. Results: One hundred one (88%) of 115 patients enrolled in the SARICOR trial had serum samples (control group: n = 33; sarilumab-200: n = 33; sarilumab-400: n = 35). Among all evaluated biomarkers, IP-10 showed the strongest association with treatment outcome. Patients with IP-10 ≥2500 pg/mL treated with sarilumab-400 had a lower probability of progression (13%) compared with the control group (58%; hazard ratio, 0.19; 95% CI, 0.04-0.90; P = .04). Conversely, patients with IP-10 <2500 pg/mL did not show these differences. Conclusions: IP-10 may predict progression to ARDS in patients with COVID-19 pneumonia and IL-6 levels >40 pg/mL. Importantly, IP-10 value <2500 pg/mL might discriminate those individuals who might not benefit from sarilumab therapy among those with high IL-6 levels.

4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2302586

ABSTRACT

Clinical knowledge about SARS-CoV-2 infection mechanisms and COVID-19 pathophysiology have enormously increased during the pandemic. Nevertheless, because of the great heterogeneity of disease manifestations, a precise patient stratification at admission is still difficult, thus rendering a rational allocation of limited medical resources as well as a tailored therapeutic approach challenging. To date, many hematologic biomarkers have been validated to support the early triage of SARS-CoV-2-positive patients and to monitor their disease progression. Among them, some indices have proven to be not only predictive parameters, but also direct or indirect pharmacological targets, thus allowing for a more tailored approach to single-patient symptoms, especially in those with severe progressive disease. While many blood test-derived parameters quickly entered routine clinical practice, other circulating biomarkers have been proposed by several researchers who have investigated their reliability in specific patient cohorts. Despite their usefulness in specific contexts as well as their potential interest as therapeutic targets, such experimental markers have not been implemented in routine clinical practice, mainly due to their higher costs and low availability in general hospital settings. This narrative review will present an overview of the most commonly adopted biomarkers in clinical practice and of the most promising ones emerging from specific population studies. Considering that each of the validated markers reflects a specific aspect of COVID-19 evolution, embedding new highly informative markers into routine clinical testing could help not only in early patient stratification, but also in guiding a timely and tailored method of therapeutic intervention.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Reproducibility of Results , Biomarkers , Hospitalization
5.
Comput Struct Biotechnol J ; 19: 976-988, 2021.
Article in English | MEDLINE | ID: covidwho-2266096

ABSTRACT

Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.

6.
Front Med (Lausanne) ; 10: 1095828, 2023.
Article in English | MEDLINE | ID: covidwho-2266470

ABSTRACT

Background: This study aimed to investigate the efficacy and safety of subcutaneous injection of peginterferon lambda in patients hospitalized with COVID-19. Methods: In this study (NCT04343976), patients admitted to hospital with COVID-19 confirmed by RT-PCR from nasopharyngeal swab were randomly assigned within 48 h to receive peginterferon lambda or placebo in a 1:1 ratio. Participants were subcutaneously injected with a peginterferon lambda or saline placebo at baseline and day 7 and were followed up until day 14. Results: We enrolled 14 participants; 6 participants (85.7%) in the peginterferon lambda group and 1 participant (14.3%) in the placebo group were treated with remdesivir prior to enrollment. Fifty percent of participants were SARS-CoV-2 RNA negative at baseline although they tested SARS-CoV-2 RNA positive within 48 h of randomization. Among participants who were SARS-CoV-2 positive at baseline, 2 out of 5 participants (40%) in the peginterferon lambda group became negative at day 14, while 0 out of 2 participants (0%) in the placebo group achieved negativity for SARS-CoV-2 by day 14 (p > 0.05). The median change in viral load (log copies per ml) was +1.72 (IQR -2.78 to 3.19) in the placebo group and -2.22 (IQR -3.24 to 0.55) in the peginterferon lambda group at day 14 (p = 0.24). Symptomatic changes did not differ between the two groups. Peginterferon lambda was well tolerated with a few treatment-related adverse effects. Conclusion: Peginterferon lambda appears to accelerate SARS-CoV-2 viral load decline and improve plasma disease progression markers in hospitalized patients with COVID-19.

7.
Infection ; 2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2230107

ABSTRACT

PURPOSE: We evaluated the host-response marker score "BV" and its components TRAIL, IP-10, and CRP in SARS-CoV-2 positive children, and estimated the potential impact on clinical decision-making. METHODS: We prospectively analyzed levels of TRAIL, IP-10, CRP, and the BV score, in children with suspected COVID-19. Classification of infectious etiology was performed by an expert panel. We used a 5-point-questionnaire to evaluate the intention to treat with antibiotics before and after receiving test results. RESULTS: We screened 111 children, of whom 6 (5.4%) were positive for SARS-CoV-2. A total of 53 children were included for the exploratory analysis. Median age was 3.1 years (interquartile range [IQR] 1.3-4.3), and 54.7% (n = 29) were girls. A viral and a bacterial biomarker pattern was found in 27/53 (50.9%) and 15/53 (28.3%), respectively. BV scores differed between COVID-19, children with other viral infections, and children with bacterial infections (medians 29.5 vs. 9 vs. 66; p = 0.0006). Similarly, median TRAIL levels were different (65.5 vs. 110 vs. 78; p = 0.037). We found no differences in IP-10 levels (555 vs. 504 vs. 285; p = 0.22). We found a concordance between physicians' "unlikely intention to treat" children with a viral test result in most cases (n = 19/24, 79.2%). When physicians expressed a "likely intention to treat" (n = 15), BV test revealed 5 bacterial, viral, and equivocal scores each. Antibiotics were withheld in three cases (20%). Overall, 27/42 (64%) of pediatricians appraised the BV test positively, and considered it helpful in clinical practice. CONCLUSION: Host-response based categorization of infectious diseases might help to overcome diagnostic uncertainty, support clinical decision-making and reduce unnecessary antibiotic treatment.

8.
Infect Dis (Lond) ; 55(4): 243-254, 2023 04.
Article in English | MEDLINE | ID: covidwho-2187932

ABSTRACT

BACKGROUND: Currently, there is scant information regarding the features associated to the persistence of post-COVID-19 syndrome, which is the main aim of the present study. METHODS: A cohort study of 102 COVID-19 patients was conducted. The post-COVID-19 symptoms were assessed by a standardised questionnaire. Lymphocyte immunophenotyping was performed by flow cytometry and chemokines/cytokines, neutrophil extracellular traps, the tripartite motif 63, anti-cellular, and anti-SARS-CoV-2 IgG antibodies were addressed in serum. The primary outcome was the persistence of post-COVID-19 syndrome after six months follow-up. RESULTS: Thirteen patients (12.7%) developed the primary outcome and had a more frequent history of post-COVID-19 syndrome 3 months after infection onset (p = .044), increased levels of IL-1α (p = .011) and IP-10 (p = .037) and increased CD57 expression in CD8+ T cells (p = .003). There was a trend towards higher levels of IFN-γ (p = .051), IL-1ß (p = .062) and IL-6 (p = .087). The history of post COVID-19 in the previous 3 months, obesity, baseline serum MIP-1α and IP-10, and CD57 expression in CD8+ T cells were independently associated with the persistence of post-COVID-19 syndrome. CONCLUSION: Our data suggest an important relationship between a pro-inflammatory state mediated through metabolic pathways related to obesity and increased cellular senescence as a key element in the persistence of post-COVID-19 syndrome at six months of follow-up.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Pilot Projects , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Cohort Studies , Chemokine CXCL10 , Obesity
9.
Cytokine ; 162: 156111, 2023 02.
Article in English | MEDLINE | ID: covidwho-2158716

ABSTRACT

OBJECTIVES: Elevated concentrations of soluble urokinase plasminogen activator receptor (suPAR) predict progression to severe respiratory failure (SRF) or death among patients with COVID-19 pneumonia and guide early anakinra treatment. As suPAR testing may not be routinely available in every health-care setting, alternative biomarkers are needed. We investigated the performance of C-reactive protein (CRP), interferon gamma-induced protein-10 (IP-10) and TNF-related apoptosis-inducing ligand (TRAIL) for predicting SRF or death in COVID-19. METHODS: Two cohorts were studied; one discovery cohort with 534 patients from the SAVE-MORE clinical trial; and one validation cohort with 364 patients from the SAVE trial including also 145 comparators. CRP, IP-10 and TRAIL were measured by the MeMed Key® platform in order to select the biomarker with the best prognostic performance for the early prediction of progression into SRF or death. RESULTS: IP-10 had the best prognostic performance: baseline concentrations 2000 pg/ml or higher predicted equally well to suPAR (sensitivity 85.0 %; negative predictive value 96.6 %). Odds ratio for poor outcome among anakinra-treated participants of the SAVE-MORE trial was 0.35 compared to placebo when IP-10 was 2,000 pg/ml or more. IP-10 could divide different strata of severity for SRF/death by day 14 in the validation cohort. Anakinra treatment decreased this risk irrespective the IP-10 concentrations. CONCLUSIONS: IP-10 concentrations of 2,000 pg/ml or higher are a valid alternative to suPAR for the early prediction of progression into SRF or death the first 14 days from hospital admission for COVID-19 and they may guide anakinra treatment. CLINICALTRIALS: gov, NCT04680949 and NCT04357366.


Subject(s)
COVID-19 , Respiratory Insufficiency , Humans , Receptors, Urokinase Plasminogen Activator , Interferon-gamma , Chemokine CXCL10 , Interleukin 1 Receptor Antagonist Protein , Prognosis , Biomarkers , C-Reactive Protein
10.
Iran J Immunol ; 19(3): 311-320, 2022 09.
Article in English | MEDLINE | ID: covidwho-2056778

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emergent viral disease in which the host inflammatory response modulates the clinical outcome. Severe outcomes are associated with an exacerbation of inflammation in which chemokines play an important role as the attractants of immune cells to the tissues. OBJECTIVE: To evaluate the relationship of the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10 with COVID-19 severity and outcomes in Mexican patients. METHODS: We analyzed the serum levels of IL-8, RANTES, MIG, MCP-1 and IP-10 in 148 COVID-19 hospitalized patients classified as mild (n=20), severe (n=61), and critical (n=67), as well as in healthy individuals (n=10), by flow cytometry bead array assay. RESULTS: Chemokine levels were higher in patients than in the healthy individuals, but only MIG, MCP-1, and IP-10 increased according to the disease severity, showing the highest levels in the critical group. MIG, MCP-1, and IP-10 levels were also higher in COVID-19 patients with comorbidities such as renal disease, type 2 diabetes, and hypertension. Moreover, elevated MIG levels seem to be related to organic failure/shock, and an increased risk of death. CONCLUSIONS: Our results suggest that the increased levels of MCP-1, IP-10, and especially MIG might be useful in predicting severe COVID-19 outcomes and could be promising therapeutic targets.


Subject(s)
COVID-19 , Chemokine CXCL9 , COVID-19/mortality , Chemokine CCL5 , Chemokine CXCL10 , Chemokine CXCL9/metabolism , Humans , Interleukin-8 , Mexico
11.
Viruses ; 14(10)2022 09 26.
Article in English | MEDLINE | ID: covidwho-2043990

ABSTRACT

SARS-CoV-2 is the etiological agent of COVID-19, an extremely heterogenous disease that can cause severe respiratory failure and critical illness. To date, reliable biomarkers allowing for early patient stratification according to disease severity are still lacking. Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide involved in lung pathophysiology and immune modulation and is poorly investigated in the COVID-19 context. In this observational, prospective cohort study, we investigated the correlation between CGRP and clinical disease evolution in hospitalized moderate to severe COVID-19 patients. Between January and May 2021 (Italian third pandemic wave), 135 consecutive SARS-CoV-2 patients were diagnosed as being eligible for the study. Plasma CGRP level evaluation and routine laboratory tests were performed on blood samples collected at baseline and after 7 days of hospitalization. At baseline, the majority our patients had a moderate to severe clinical presentation, and higher plasma CGRP levels predicted a higher risk of in-hospital negative evolution (odds-ratio OR 2.84 [IQR 1.07-7.51]) and were correlated with pulmonary intravascular coagulopathy (OR 2.92 [IQR 1.19-7.17]). Finally, plasma CGRP levels were also correlated with plasma IP10 levels. Our data support a possible crosstalk between the lung and the neuroimmune axis, highlighting a crucial role for plasma CGRP in sustaining COVID-19-related hyperinflammation.


Subject(s)
COVID-19 , Neuropeptides , Humans , Calcitonin Gene-Related Peptide , SARS-CoV-2 , Prospective Studies , Chemokine CXCL10 , Prognosis , Biomarkers
12.
Egypt J Intern Med ; 34(1): 53, 2022.
Article in English | MEDLINE | ID: covidwho-1928217

ABSTRACT

Background: Evaluating the serum levels of IP-10, MCP-1, MIP-1α, and IL-6 and genotyping of rs12252 SNP of IFITM3 gene among different categories of COVID-19 patients might aid in understanding the pathogenesis of COVID-19 and contribute to developing disease-specific biomarkers and therapeutic strategies. Methods: This is a cross-sectional study involving a total of 84 COVID-19 patients confirmed by positive RT-PCR and 28 healthy controls. COVID-19 patients were recruited from the intensive care unit (ICU) and COVID unit of Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka. COVID-19 patients were categorized into moderate, severe, and critically ill groups according to the World Health Organization classification. The serum IP-10, MCP-1, and MIP-1α levels were measured by cytometric bead array assay by flow cytometry, and serum IL-6 level was detected by the chemiluminescence method. rs12252 SNP of the IFITM3 gene was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR RFLP). Results: The serum IP-10, MCP-1, MIP-1α, and IL-6 levels among critically ill COVID-19 patients were significantly higher than that in patients with moderate disease and healthy controls (p < 0.001). Genotype distribution for rs12252 (42 T/C) SNP of the IFITM3 gene between the different groups of COVID-19 patients and healthy controls showed that CC genotype was statistically associated with disease severity (p < 0.001). Conclusions: IP-10 and MCP-1, MIP-α, IL-6, and CC genotype of rs12252 (42 T/C) SNP of IFITM3 gene are associated with COVID-19 severity.

13.
Microchemical Journal ; : 107719, 2022.
Article in English | ScienceDirect | ID: covidwho-1895334

ABSTRACT

The 10-kDa chemokine interferon-gamma-inducible protein 10 (IP-10) is considered one of the most promising biomarkers for diagnosing both tuberculosis and COVID-19 infections. The blood samples of patients at different disease states contain different levels of IP-10, which need to be detected in a rapid, specific and ultrasensitive manner. Here, we report a bienzymatic chemiluminescence sandwich immunoassay (BCSI) assay for the ultrasensitive and stable detection of IP-10. In this assay, IP-10 is first efficiently captured using a double-antibody sandwich strategy. The detection antibody is linked to catalase (CAT) via a streptavidin-biotin signal amplification system to achieve highly efficient conversion of hydrogen peroxide (H2O2) to oxygen and water. In the chemiluminescence (CL) reaction, horseradish peroxidase (HRP) acts as an efficient catalyst, and 4-bromophenol acts as an enhancer for the cyclic transition of HRP, which results in a strong and durable CL signal. The bienzymatic catalysis with CAT and HRP and the potentiation of 4-bromophenol enables the assay to be ultrasensitive and stable. The CL intensity was found to be well correlated with the detection of IP-10 at levels in the range of 0.71 to 125,000 pg/mL, which covers more than 6 orders of magnitude, with a detection limit of 0.63 pg/mL. The coefficient of variation was 1.49%, and the recovery range of IP-10 in serum was 86.21%-104.57%. This assay provides a wide linear range and high sensitivity and may be a promising method for the high-throughput detection of IP-10 in the diagnosis of tuberculosis and COVID-19.

14.
Journal of Pure & Applied Microbiology ; 16(2):1298-1306, 2022.
Article in English | Academic Search Complete | ID: covidwho-1893567

ABSTRACT

Patients with coronavirus disease-19 (COVID-19) present as mildly, moderately, or severely and critically ill. Cytokine storm is responsible for fatal pneumonia and acute respiratory distress syndrome. Interferon-1-induced protein-10 (IP-10) and chemokine ligand-7 (CCL-7) are chemokines that play a role in the chemotaxis of inflammatory cells and the release of pro-inflammatory cytokines. In this study, we assessed the serum levels of IP-10 and CCL-7 chemokines in COVID-19 patients and their correlation with disease severity and prognosis. The serum levels of CCL-7 and IP-10 were assessed in 67 COVID-19 patients and 10 healthy controls. Serum samples were collected and examined for these two markers using direct enzyme-linked immunosorbent assay. Patients were divided into two groups according to their disease severity. Serum levels of the test markers were compared between patients and controls, and between patients with different disease severities and correlated with other clinical and laboratory parameters. CCL-7 and IP-10 levels were significantly higher in patients than in controls and in severe than in mild/moderate cases. The receiver operating characteristic curve analysis of the two markers showed better performance of the combined markers as predictors of disease severity (area under the curve = 0.792). The results of our study suggest a potential role of IP-10 and CCL-7 as predictors of COVID-19 severity. [ FROM AUTHOR] Copyright of Journal of Pure & Applied Microbiology is the property of Dr. M. N. Khan and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

15.
Int J Infect Dis ; 122: 178-187, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1889494

ABSTRACT

BACKGROUND: Early prognostication of COVID-19 severity will potentially improve patient care. Biomarkers, such as TNF-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein 10 (IP-10), and C-reactive protein (CRP), might represent possible tools for point-of-care testing and severity prediction. METHODS: In this prospective cohort study, we analyzed serum levels of TRAIL, IP-10, and CRP in patients with COVID-19, compared them with control subjects, and investigated the association with disease severity. RESULTS: A total of 899 measurements were performed in 132 patients (mean age 64 years, 40.2% females). Among patients with COVID-19, TRAIL levels were lower (49.5 vs 87 pg/ml, P = 0.0142), whereas IP-10 and CRP showed higher levels (667.5 vs 127 pg/ml, P <0.001; 75.3 vs 1.6 mg/l, P <0.001) than healthy controls. TRAIL yielded an inverse correlation with length of hospital and intensive care unit (ICU) stay, Simplified Acute Physiology Score II, and National Early Warning Score, and IP-10 showed a positive correlation with disease severity. Multivariable regression revealed that obesity (adjusted odds ratio [aOR] 5.434, 95% confidence interval [CI] 1.005-29.38), CRP (aOR 1.014, 95% CI 1.002-1.027), and peak IP-10 (aOR 1.001, 95% CI 1.00-1.002) were independent predictors of in-ICU mortality. CONCLUSIONS: We demonstrated a correlation between COVID-19 severity and TRAIL, IP-10, and CRP. Multivariable regression showed a role for IP-10 in predicting unfavourable outcomes, such as in-ICU mortality. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04655521.


Subject(s)
C-Reactive Protein , COVID-19 , C-Reactive Protein/metabolism , COVID-19/diagnosis , Chemokine CXCL10 , Female , Humans , Intensive Care Units , Interferon-gamma , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , TNF-Related Apoptosis-Inducing Ligand
16.
Int J Immunopathol Pharmacol ; 36: 3946320221096202, 2022.
Article in English | MEDLINE | ID: covidwho-1832998

ABSTRACT

INTRODUCTION: The Innate immune system senses danger signals of COVID-19 infection and produce an orchestration of cellular, complement and cytokines cascades. These led to the approach using immunosuppressive agents. It is intriguing whether certain biomarkers can aid the proper administration of such drugs. METHODS: Plasma specimens of 58 COVID-19 patients with differing severity, from very mild illness (group A), mild (group B), moderate (group C), and severe/critical illness (group D) were assayed for cyto-chemokines and terminal complement complex (SC5b-9) during the course of diseases. None received anti-IL-6 therapy, there was no mortality in this cohort. RESULTS: IP-10 and RANTES levels were dominant cytokines. IP-10 levels increased significantly in all groups when compared between pre-nadir and nadir phases (group A, p =0.428; group B =0.034; group C =0.159; group D <0.001) and in groups B and D when compared between nadir and recovery phases (p <0.001). RANTES levels were elevated in all groups across all phases with no significant differences. SC5b-9 levels increased significantly as compared to healthy controls [pre-nadir- group A versus healthy, p =0.122; group B-D versus healthy, p =0.021); nadir-group A versus healthy, p =0.003; group B-D versus healthy, p <0.001; recovery phase (p <0.001)] but not between groups A and B-D at pre-nadir (p=0.606). CONCLUSION: The absence of significant pro-inflammatory responses and early elevation of IP-10 levels and complement activation may be favorable and necessary for viral elimination in COVID-19 patients. Expression of distinct cyto-chemokines during each clinical phase may be useful for guiding proper therapeutic interventions on alleviating thrombo-inflammation responses to COVID-19 infection.


Subject(s)
COVID-19 , Chemokine CXCL10 , Complement Activation , COVID-19/immunology , Chemokine CCL5/immunology , Chemokine CXCL10/immunology , Cytokines/immunology , Humans , SARS-CoV-2
17.
J Clin Transl Sci ; 5(1): e146, 2021.
Article in English | MEDLINE | ID: covidwho-1815383

ABSTRACT

BACKGROUND: A feedforward pathological signaling loop generated by TNFα and IFN-γ synergy in the inflamed lung, driving CXCL-10 (IP-10) and CXCL-9 chemokine-mediated activated T-cell and monocyte/macrophage tissue recruitment, may define the inflammatory biology of lethal COVID-19 respiratory failure. METHODS: To assess TNFα-antagonist therapy, 18 hospitalized adults with hypoxic respiratory failure and COVID-19 pneumonia received single-dose infliximab-abda therapy 5 mg/kg intravenously between April and December 2020. The primary endpoint was time to increase in oxygen saturation to fraction of inspired oxygen ratio (SpO2/FiO2) by ≥50 compared to baseline and sustained for 48 h. Secondary endpoints included 28-day mortality, dynamic cytokine profiles, secondary infections, duration of supplemental oxygen support, and hospitalization. FINDINGS: Patients were predominantly in critical respiratory failure (15/18, 83%), male (14/18, 78%), above 60 years (median 63 years, range 31-80), race-ethnic minorities (13/18, 72%), lymphopenic (13/18, 72%), steroid-treated (17/18, 94%), with a median ferritin of 1953 ng/ml. Sixteen patients (89%) met the primary endpoint within a median of 4 days; 14/18 (78%) were discharged in a median of 8 days and were alive at 28-day follow-up. Three deaths were attributed to secondary lung infection. Mean plasma IP-10 levels declined sharply from 9183 to 483 pg/ml at Day 3 and 146 pg/ml at Day 14/discharge. Significant Day 3 declines in IFN-, TNFα, IL-27, CRP, and ferritin occurred. IP-10 and CXCL-9 declines were strongly correlated among patients with lymphopenia reversal (Day 3, Pearson r: 0.98, P-value 0.0006). INTERPRETATION: Infliximab-abda may rapidly abrogate pathological inflammatory signaling to facilitate clinical recovery in severe and critical COVID-19.

18.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1809944

ABSTRACT

The main aim of this study was to identify the most relevant cytokines which, when assessed in the earliest stages from hospital admission, may help to select COVID-19 patients with worse prognosis. A retrospective observational study was conducted in 415 COVID-19 patients (272 males; mean age 68 ± 14 years) hospitalized between May 2020 and March 2021. Within the first 72 h from hospital admission, patients were tested for a large panel of biomarkers, including C-reactive protein (CRP), Mid-regional proadrenomedullin (MR-proADM), Interferon-γ, interleukin 6 (IL-6), IL-1ß, IL-8, IL-10, soluble IL2-receptor-α (sIL2Rα), IP10 and TNFα. Extensive statistical analyses were performed (correlations, t-tests, ranking tests and tree modeling). The mortality rate was 65/415 (15.7%) and a negative outcome (death and/or orotracheal intubation) affected 98/415 (23.6%) of cases. Univariate tests showed the majority of biomarkers increased in severe patients, but ranking tests helped to select the best variables to put on decisional tree modeling which identified IL-6 as the first dichotomic marker with a cut-off of 114 pg/mL. Then, a good synergy was found between IL-10, MR-proADM, sIL2Rα, IP10 and CRP in increasing the predictive value in classifying patients at risk or not for a negative outcome. In conclusion, beside IL-6, a panel of other cytokines representing the degree of immunoparalysis and the anti-inflammatory response (IP10, sIL2Rα and IL-10) showed synergic role when combined to biomarkers of systemic inflammation and endothelial dysfunction (CRP, MR-proADM) and may also better explain disease pathogenesis and suggests targeted intervention.


Subject(s)
COVID-19 , Adrenomedullin , Aged , Aged, 80 and over , Biomarkers , C-Reactive Protein/metabolism , COVID-19/diagnosis , Chemokine CXCL10 , Cytokines , Humans , Interleukin-10 , Interleukin-6 , Male , Middle Aged , Retrospective Studies
19.
J Clin Med ; 11(5)2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1732085

ABSTRACT

BACKGROUND: To investigate the diagnostic accuracy of CXCL10/IP10 for left ventricular (LV) dysfunction in multisystemic inflammatory syndrome (MIS-C). METHODS: This cross-sectional, longitudinal study included 36 patients with MIS-C. Patients were classified as follows: (1) patients presenting with Kawasaki-like features (group I = 11); (2) patients presenting with LV systolic dysfunction (group II = 9); and (3) other presentations (group III = 3). CXCL10/IP10 levels were measured upon admission and on days 3 and 7 of treatment. RESULTS: Twenty patients were male and 16 were female. The median age of patients at diagnosis was 7.5 (1.5-17) years. All patients had a fever lasting for a median of 4 (2-7) days. Ten patients had LV systolic dysfunction. The duration of hospitalization was longer in group II. Lymphocyte and platelet counts were lower, whereas NT-pro-BNP, troponin-I, D-dimer, and CXCL10/IP10 levels were higher in group II. Baseline levels of CXCL10/IP10 were weakly negatively correlated with ejection fraction (r = -0.387, p = 0.022). Receiver operator characteristic curve analysis yielded a cutoff value of CXCL10/IP10 to discriminate patients with LV dysfunction was 1839 pg/mL with sensitivity 88% and specificity 68% (Area under curve (AUC) = 0.827, 95% CI 0.682-0.972, p = 0.003). CONCLUSION: Having a good correlation with cardiac function, CXCL10/IP10 is a potential biomarker to predict LV dysfunction in MIS-C patients.

20.
Viruses ; 14(2)2022 01 20.
Article in English | MEDLINE | ID: covidwho-1649018

ABSTRACT

While numerous studies have already compared the immune responses against SARS-CoV-2 in severely and mild-to-moderately ill COVID-19 patients, longitudinal trajectories are still scarce. We therefore set out to analyze serial blood samples from mild-to-moderately ill patients in order to define the immune landscapes for differently progressed disease stages. Twenty-two COVID-19 patients were subjected to consecutive venipuncture within seven days after diagnosis or admittance to hospital. Flow cytometry was performed to analyze peripheral blood immune cell compositions and their activation as were plasma levels of cytokines and SARS-CoV-2 specific immunoglobulins. Healthy donors served as controls. Integrating the kinetics of plasmablasts and SARS-CoV-2 specific antibodies allowed for the definition of three disease stages of early COVID-19. The incubation phase was characterized by a sharp increase in pro-inflammatory monocytes and terminally differentiated cytotoxic T cells. The latter correlated significantly with elevated concentrations of IP-10. Early acute infection featured a peak in PD-1+ cytotoxic T cells, plasmablasts and increasing titers of virus specific antibodies. During late acute infection, immature neutrophils were enriched, whereas all other parameters returned to baseline. Our findings will help to define landmarks that are indispensable for the refinement of new anti-viral and anti-inflammatory therapeutics, and may also inform clinicians to optimize treatment and prevent fatal outcomes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Acute Disease , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Blood Cell Count , Chemokine CXCL10/blood , Chemokine CXCL10/immunology , Cytokines/blood , Cytokines/immunology , Female , Humans , Inflammation , Longitudinal Studies , Male , Middle Aged , Neutrophils/immunology , T-Lymphocytes, Cytotoxic/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL